Matematika

Pertanyaan

Jika h'(x) = ax - 2 dengan h'(2) = 6 dan h(-1) = 4, integral h(x) dx =

1 Jawaban

  • Integral

    h'(x) = ax - 2
    h'(2) = 6

    h'(2) = 2a - 2
    2a - 2 = 6
    2a = 8
    a = 4

    h'(x) = 4x - 2

    Cari h(x) dlu dgn integralkan h'(x)

    int 4x - 2 dx
    = (4/2)x^(1+1) - 2x + C
    = 2x² - 2x + C

    h(-1) = 4

    2 (-1)² - 2(-1) + C = 4
    2.1 + 2 + C = 4
    4 + C = 4
    C = 0

    h(x) = 2x² - 2x

    int 2x² - 2x dx
    = 2/(2+1) . x^(2+1) - 2/(1+1) . x^(1+1)
    = [tex] \dfrac{2}{3} x^3 - x^2 [/tex]

Pertanyaan Lainnya